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Overview

e Front-End: Isabelles Document Model

e Back-End: Global/Local Contexts

e HOL Semantics and Foundations

e Conservative Extensions of Contexts

» Specification Constructs in Isabelle/HOL
* More on Proof Automation
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Isabelle Document Model
and

Global/Local Contexts
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What is Isabelle as a System ?

* Global View of a “session"
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Revision: Documents and Commands

- Each position in document corresponds

— to a“global context” ©
(containing a signature X and a set of axioms A)

— to a"local context” ©,T

— [reminder] composing a thm I o ®

+ There are specific , Inspection Commands" that give
access to information in the contexts

— thm, term, typ, value, prop : global context

— thm, print_cases, facts, ..., : local context

21/1/21 B. Wolff - M1-PIA Semantics and Constructions



What is Isabelle as a System ?

* Document “positions” were evaluated to an

state, corresponding
global context ©

semantic

evaluation
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Commands for Basic Theory Extensions

- Isabelle has (similar to Eclipse) a
,document-centric” view of development:
there is a notion on an entire "project”
which is processed globally.

- Documents (projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

+ A Document Configuration is specified in ROOT file
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Theory Extensions
and
Global/Local Contexts
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Commands for Basic Theory Extensions

* Type Declaration

typedecl *(a,...,a ) <typconstructor-id>"

example: typedecl| “L"

* (Unspecified) Constant Declaration:

\\

consts c :: ,t

example: consts True :: “bool”
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Commands for Basic Theory Extensions

- Constant Declaration "Semantics”:

(2’ A) ’,EII @

@ consts c:: ,t"

Coe(cw1),A) €O

* where the constant cis “fresh” in S
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Commands for Basic Theory Extensions

- Constant Declaration "Semantics”:

(2’ A) ’,EII @

where <name> : “<prop>"

@ axiomatization c :: ,t"

(=, A @ (<name> » <prop>)) “e” @'

* where the constant C may be arbitrary.
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Foundation:

Introduction tfo
HOL Semantics
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A Critique on Axioms

In general, theory extensions are problematic

In particular, axioms are extremely dangerous.
Consider:

axiomatization Y :: ,(la="'o)="a"
where rec : Y f = f(Y f)”

Wouldnt be dead useful, n‘est-ce pas ?

But is inconsistent:
Consider the instance: Y(—) =~(Y())

B. Wolff - M1-PIA Semantics and Constructions



21/1/21

How to built theories
in a logically safe manner ?

This leads to are a number of questions:

Is the logic HOL consistent ?
Is HOL correctly implemented in Isabelle ?
How to extend HOL in a logically safe way ?

Is there a method that scales to the
entire HOL library, i.e. to ,Main™ ?

We will address these questions one by one ...
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How to built theories
in a logically safe manner ?

HOL consistency

— ... can only be answered relatively,
i.e. relative to a logical system which gives
a formal ,interpretation” of HOL terms.

— the gold-standard for mathematicians and
logicians is ,,Zermelo-Fraenkel Set Theory"
plus ,,axiom of choice", called ZFC.

— it is possible to give several interpretations of HOL
in ZFC and prove the validity of HOL’s core axioms
relative to these interpretations.
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How to built theories
in a logically safe manner ?

* HOL consistency

— ZFC gives a kind of ,universe of sets’ V with the
properties:

* an infinite set | is part of V
any product V‘x V¥ is part of V, if V‘and V* are

any potence set %(V) is part of V provided that V' is.
(this is not possible in a typed set-theory)

— Since relations #(V‘x V“) are part of V, it is possible to
express in V function spaces.

— ZFC gives us an “untyped set-theory”
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How to built theories
in a logically safe manner ?

* HOL consistency

— Since relations P#(V'x V¥) are part of V, it is possible
to define in V the following function spaces:

A= B={f: 2(V'x V¥) | f # @ and f is function}

standard

schA = . B c{f: PV'xV)I|fzeandfis function}

henkin

A = B ={f: P(V'x V¥) | f £ @ and

construct

f is a computable function}
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How to built theories
in a logically safe manner ?

* HOL consistency

— On this basis, we can give a standard
/ Henkin-style / constructivist
interpretation of HOL types T into V:

- the “standard model”

standard ’

- L » the Henkin-model

— the constructivist model

construct’

21/1/21 B. Wolff - M1-PIA Semantics and Constructions



How to built theories
in a logically safe manner ?

HOL consistency

— On this basis, we can give a standard interpretation
of HOL core types into V

|l garg [000OIT ={a,b} (where a,b are some distinct

elements from the infinite set )
I [ind] = |

standard

[t]1= [t

[[‘531?‘]] = |

Is’[andard standard standard Is.tandard
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How to built theories
in a logically safe manner ?

HOL consistency

— On this basis, we can give a Henkin interpretation
of HOL core types into V

| .. [booll={ab} (where a,b are some distinct

elements from the infinite set 1)
Ihenkin [[md]] =
henkin [[‘5213‘]] = (Ihenkinl]:T ]]) :>henkin (Ihenkin[[T,]])
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How to built theories
in a logically safe manner ?

* HOL consistency

— On this basis, we can give a standard interpretation
of HOL core types into V

* | et [POOIT ={a,b} (where a,b are some distinct

elements from the infinite set )
I [ind] = |

construct

[t]= [t

e | [t=1] = |

construct construct construct construct

— It is easy to show that our typing

rules are consistent with Istandard’ henkin ’ 'construct.
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How to built theories
in a logically safe manner ?

* HOL consistency

— Core HOL needs a small number of axioms.

— Traditional papers [Andrews86] reduce it
to 6 axioms plus the axiom of infinity:

3 f::ind = ind. injective f A asurjective f

— The presentation of the axiomatic core
in Isabelle/HOL looks as follows:
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How to built theories
in a logically safe manner ?

* The presentation in Isabelle/HOL looks as
follows:

- refl: "t = (t::'a)"

— subst:'s=t—=Ps= Pt"

— ext: "(Ax:'a. (fx :i'b) = g x) = (AX. fX) = (AX. g X)"
— the_eq_trivial: "(THE x. x = a) = (a::'a)"

—  impl:"(P = Q) = P— Q"

- mp:"P— Q= P= Q"

- fi"P—Q) — (Q—P)— (P=Q)

—  True_or_False: "(P = True) v (P = False)"
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How to built theories
in a logically safe manner ?

. where:

— True is an abbreviation for
((AX::bool. x) = (AX. X))

— All(P) for (P = (Ax. True))
—  False for (VP. P)

— Not P for P — False
— and for VR. (P — Q — R) — R
— or for VR. (P — R) — (Q — R) — R
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How to built theories
in a logically safe manner ?

* It is straight-forward to prove for the semantic interpretations
for HOL types, terms and formulas in ZFC

standard’ "~ henkin / “construct

* (Meta) Theorem: Consistency relative to ZFC

t=>V and | : T =>YV build a model for

standard standard °

Core-HOL, i.e. they satisfy all core axioms for all
assignments of the free variables they contain.

*  (Meta) Theorem: Incompleteness

This model is incomplete for Core-HOL, i.e. there are
always true terms for which this fact can not be derived.

21/1/21 B. Wolff - M1-PIA Semantics and Constructions



How to built theories
in a logically safe manner ?

* It is straight-forward to prove for the semantic interpretations
for HOL types, terms and formulas in ZFC

standard’ "~ henkin / “construct

* (Meta) Theorem: Consistency relative to ZFC

t=>V and | : T =>YV build a model for

Henkin * Henkin °

Core-HOL, i.e. they satisfy all core axioms for all
assignments of the free variables they contain.

*  (Meta) Theorem: Incompleteness

This model is complefe for Core-HOL, i.e. there are
always true terms for which this fact can not be derived.
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How to built theories
in a logically safe manner ?

* It is straight-forward to prove for the semantic interpretations
for HOL types, terms and formulas in ZFC

standard’ "~ henkin / “construct

* (Meta) Theorem: Consistency relative to ZFC

t=>V and | : T =>YV build a model for

Construct Construct *

Core-HOL, i.e. they satisfy all core axioms for all
assignments of the free variables they contain.

*  (Meta) Theorem: Incompleteness

This model is incomplete for Core-HOL, but there exists
an Isomorphism between proofs and (inhabited) types (HoCuSo).
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How to built theories
in a logically safe manner ?

* Is Isabelle/HOL a correct implementation of HOL?

— Isabelle as a system clearly contains bugs; but that does
not mean that logical inferences produce false results

— Isabelle has a kernel architecture
it is a member of the LCF-style systems that
protects , theorems’, i.e. triples of the form:

I' — o ¢
by a fairly small abstract data-type.

— Isabelle can generate proof-objects which can be checked
outside Isabelle, in principle by any other HOL prover.

— It is heavily tested and used for a long time.
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Conservative

Theory Extensions
in
Isabelle/HOL
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How to built theories
in a logically safe manner ?

* Are Extensions of HOL, so for example,
the library ,Main", logically safe ?

— not necessarily, adding arbitrary axioms
command ruins consistency easily.

— some proof-methods are not based on the kernel
(sorry, self-built oracles, the code-generator)

— However, Isabelle encourages to use conservative
specification constructs which are in some
cases even formally shown to be logically safe.
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Isabelle Specification Constructs

« Constant Definitions:

definition f::“"<t>"
where <name> : “f X{ oo X = <t>"

III

example: definition C::"bool = bool” where "C x = x"

- Type Definitions:

typedef ('a,..'a ) Kk =

“<set-expr>" <proof>

example: typedef even = "{x::int. x mod 2 = 0}"
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Specification Commands

- Simple Definitions (Non-Rec. core variant):

(2, A) ueu G)

definition f::“<t>"
where <name> : “f x; ... x_ = expr”

Eeofit, Ao “fx,...x =expr’)’e” o

— Side-Conditions
« constant symbol f must be fresh

 f must not be contained in “expr”
 (all type-variables occurring in expr must occur in T)
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Semantics of a ,Type Definition”

- Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

- For Type Definitions, we define the new
type to be isomorphic to a (non-empty)
subset of an old one.

+ The Isomorphism is stated by three
(conservative) axioms.
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Semantics of a ,Type Definition”

- Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.
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Isabelle Specification Constructs
- Type definition:

(2, A) neu e

typedef (‘a;..'a.) Kk =

“<expr :: ((‘a;..'a )T) set>" <proof>

(Z @ (fa,..'a ) @ Abs_k::('a,..'a )T = (‘a,..'a )k

@ Rep_k: :('01..'an)|< = ('al..'an)‘c
A ® {Rep_x_inverse » Abs_k (Rep_k X) = X }
® {Rep_k_inject + (Rep_k x =Rep_Ky)=(x=y)}
® {Rep_k H» Rep_k X € {x. expr x}) e’ ©

« where the type-constructor K is “fresh” in © and expr is closed

. <expr:: (‘a,..'a )t set> is non-empty (to be proven by a witness)
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Semantics of a ,Type Definition”

- Major example: Typed sets can be built following
this scheme. The trick is o identify a set with
characteristic functions a = bool.

» In Isabelle/HOL, a set is introduced via an
equivalent axiom scheme; the type-definition
uses already implicitly the a set isomorphism
to a4 = bool.
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Isabelle Specification Constructs

* Major example:
The construction of the cartesian product:

definition Pair_Rep :: "'a = 'b = 'a = 'b = bool"

where "Pair_Repab=(AXxy.x=a Ay =Db)"

definition "prod = {f. 3 a b. f = Pair_Rep (a :: 'a) (b :: 'b)}"

typedef (‘a, 'b) prod (infixr “*" 20) = “prod :: ('fa = 'b = bool) set” <proof>

type_notation (xsymbols) "prod" ("(_ x/ _)" [21, 20] 20)
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Specification Mechanism Commands

- Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

record <c> = [<record> + ]
tag, i "<t,>

tag, :: "<t >"

- ... introduces also semantics and syntax for

— selectors : tag, x
— constructors : ( tag, =x,,..., tag_=x_ )
— update-functions : X ( tag, == x )
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Specification Mechanism Commands

- Inductively Defined Sets:

where <thmname> : “<¢>"

| <thmname> = <¢>

inductive_set <c> ::" T=1set"for A::t

example: inductive_set Even :: "int set"
where null: "0 € Even"

| plus:"x € Even = x+2 € Even”

| min :"X € Even = x-2 € Even"
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Specification Mechanism Commands

» These are not built-in constructs, rather they are based on a series
of definitions and typedefs.

The machinery behind is based on a fixed-point combinator on
sets :

Ifp :: “('a set = 'a set) = 'a set”
which can be conservatively defined by
"fpf= ) {u.fucu
and which enjoys a constrained fixed-point property:
mono f = Ifp f =f (Ifp )
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Specification Mechanism Commands

- Example : Even (see before)

— the set Evenis conservatively defined by:

Even=1fo AX. {0}u (Ax.x+2) Xu (Ax. x-2)" X)

— from which the properties:

null: "0 € Even"
plus:"x € Even = x+2 € Even"

min :"X € Even = x-2 € Even"

are derived automatically behind the scenes
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Specification Mechanism Commands

- Variante: Inductively Defined Predicates:

inductive  <c> [ for <v>:: “"<t>" ]
where <thmname> : “"<¢>"

| <thmname> = <¢>

example: inductive path for rel ::"'a = 'a = bool"
where base : “path rel x x”

| step: “rel xy = pathrely z—=— pathrel x 2"
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Specification Mechanism Commands

- Datatype Definitions (similar SML/OCaml/Haskell):

(Machinery behind : complex series of const and typedefs !)

datatype (‘a,..'a ) T =

<c>::<t>" | .| <c> o tkr>”

- Recursive Function Definitions:
(Machinery behind: Veeery complex series of
const and typedefs and automated proofs!)

fun <c> ::“<t>" where
“<c> <pattern> = <t>"

| “<c> <pattern> = <t>"
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Specification Mechanism Commands

- Datatype Definitions (similar SML):

Examples:

datatype mynat = ZERO | SUC mynat
datatype 'a list = MT | CONS "'a" "'a list"
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Some more Automation
in Isabelle/HOL

21/1/21 B. Wolff - M1-PIA Semantics and Constructions



More on Proof-Methods

»+ Some advanced automated proof-methods
use theorem data-bases stored in the
global context of a theory

» This holds for:
- equational reasoning (rewriting : simp, metis)
- classical reasoning (fast, blast)
- combined methods (auto, cases, induct)

- Specification Constructs generate theorems and
sets up these “"background theories” automatically
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More on Proof-Methods

+ Some composed methods
(internally based on assumption, erule_tac and
rule_tac + tactic code that constructs the
substitutions)
— simp

(arbitrary number of left-to-right rewrites,
assumption or rule refl attepted at the end:
a global simpset in the background is used.)

— simp add: <equation> ... <equation>

— simp only: <equation> ... <equation>
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More on Proof-Methods

+ Some composed methods
(internally based on assumption, erule_tac and
rule tac + tactic code that constructs the substitutions)

— auto
(apply in exhaustive, non-deterministic manner:
all introduction rules, elimination rules and

— aufo intro: <rule> ... <rule>
elim: <erule> ... <erule>
simp: <equation> ... <equation>
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More on Proof-Methods

- Some composed methods
(internally based on assumption, erule tac and
rule _tac + tactic code that constructs the
substitutions)

— cases ,,<formula>"
(split top goal into 2 cases:
<formula> is true or <formula> is false)

— cases ,<variable>"
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

— induct_tac ,<variable>"
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.
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Screenshot with Examples

File Edit Search Markers Folding View Utilities Macros Plugins Help

[III Seq.thy (~/Papers/isar-book/Orsay/WWw/)

isabelle |

imports Main

['AJ B

_ Filter: ke
begin 8
v Seq.thy
e v theory Seq -
~ |datatvpe 'a seq = Empt Se 'a "'a seq" v header {* Finite sequences *}
yp q pty | Seq q theory Seq :
e datatype 'a seq = Empty | S §
v |fun conc :: |"'a seq = 'a seq = 'a seq"| fun conc :: "a seq = 'a seq 4R
fun reverse :: "aseq="'ase |~
whe reD type v, v lemma conc_empty: "conc xs
"conc Empty ys = ys" by
N PLy Y y ; » lemma conc_assoc: "conc (c
| "conc (Seq x xs) ys = Seq x (conc xs ys) » lemma reverse_conc: "revers
. » lemma reverse_reverse: "rev
end
v |fun reverse :: "'a seq = 'a seq"
where
"reverse Empty = Empty"
=
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)" v
<% e
100% Il] (] Tracing (/] Auto update | Update
A
constants g
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*> {}"
b
v
8| v { Output ] Prover Session EiS J Y|
10,6 (149/731) (isabelle, sidekick,UTF-8-Isabelle) - - - - UGEENE4Mb 9:57 PM
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Conclusion

+ HOL has several Models in ZFC,
incomplete, complete, and constructivist ones

. Models justify the notion of “conservative theory
extensions” (definition, type-definition, ...)

- Isabelle supports a number of “specification
constructs” built from conservative theory extensions

+ Isabelle/HOLs library is built uniquely from them
which guarantees logical consistency by construction

- Isabelle/HOL possesses a kernel-architecture
in the tradition of so-called “"LCF-style provers”
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